Для производства пищевого белка выращивают бактерии

Раздел «Промышленная биотехнология»

Производство белка микроорганизмов

Продуценты белка

Производство микробной биомассы — самое крупное микробиологическое производство. Микробная биомасса может быть хорошей белковой добавкой для домашних животных, птиц и рыб. Производство микробной биомассы особенно важно для стран, не культивирующих в больших масштабах сою (соевую муку используют как традиционную белковую добавку к кормам).

При выборе микроорганизма учитывают удельную скорость роста и выход биомассы на данном субстрате, стабильность при поточном культивировании, величину клеток. Клетки дрожжей крупнее, чем бактерий, и легче отделяются от жидкости при центрифугировании. Можно выращивать полиплоидные мутанты дрожжей с крупными клетками. В настоящее время известны только две группы микроорганизмов, которым присущи свойства, необходимые для крупномасштабного промышленного производства: это дрожжи рода Candida на n-алканах (нормальных углеводородах) и бактерии Methylophillus methylotrophus на метаноле.

Микроорганизмы можно выращивать и на других питательных средах: на газах, нефти, отходах угольной, химической, пищевой, винно-водочной, деревообрабатывающей промышленности. Экономические преимущества их использования очевидны. Так, килограмм переработанной микроорганизмами нефти дает килограмм белка, а, скажем, килограмм сахара — всего 500 граммов белка. Аминокислотный состав белка дрожжей практически не отличается от такового, полученного из микроорганизмов, выращенных на обычных углеводных средах. Биологические испытания препаратов из дрожжей, выращенных на углеводородах, которые проведены и у нас в стране и за рубежом, выявили полное отсутствие у них какого-либо вредного влияния на организм испытуемых животных. Опыты были проведены на многих поколениях десятков тысяч лабораторных и сельскохозяйственных животных. В непереработанном виде дрожжи содержат неспецифические липиды и аминокислоты, биогенные амины, полисахариды и нуклеиновые кислоты, а их влияние на организм пока еще плохо изучено. Поэтому и предлагается выделять из дрожжей белок в химически чистом виде. Освобождение его от нуклеиновых кислот также уже стало несложным.

В современных биотехнологических процессах, основанных на использовании микроорганизмов, продуцентами белка служат дрожжи, другие грибы, бактерии и микроскопические водоросли.

С технологической точки зрения наилучшими из них являются дрожжи. Их преимущество заключается прежде всего в «технологичности»: дрожжи легко выращивать в условиях производства. Они характеризуются высокой скоростью роста, устойчивостью к посторонней микрофлоре, способны усваивать любые источники питания, легко отделяются, не загрязняют воздух спорами. Клетки дрожжей содержат до 25% сухих веществ. Наиболее ценный компонент дрожжевой биомассы — белок, который по составу аминокислот превосходит белок зерна злаковых культур и лишь немного уступает белкам молока и рыбной муки. Биологическая ценность дрожжевого белка определяется наличием значительного количества незаменимых аминокислот. По содержанию витаминов дрожжи превосходят все белковые корма, в том числе и рыбную муку. Кроме того, дрожжевые клетки содержат микроэлементы и значительное количество жира, в котором преобладают ненасыщенные жирные кислоты. При скармливании кормовых дрожжей коровам повышаются удои и содержание жира в молоке, а у пушных зверей улучшается качество меха. Интерес представляют и дрожжи, обладающие гидролитическими ферментами и способные расти на полисахаридах без их предварительного гидролиза. Использование таких дрожжей позволит избежать дорогостоящую стадию гидролиза полисахаридсодержащих отходов. Известно более 100 видов дрожжей, которые хорошо растут на крахмале как на единственном источнике углерода. Среди них особенно выделяются два вида, которые образуют как глюкоамилазы, так и β-амилазы, растут на крахмале с высоким экономическим коэффициентом и могут не только ассимилировать, но и сбраживать крахмал: Schwanniomyces occidentalis и Saccharomycopsis fibuliger. Оба вида — перспективные продуценты белка и амилолитических ферментов на крахмалсодержащих отходах. Ведутся поиски и таких дрожжей, которые могли бы расщеплять нативную целлюлозу. Целлюлазы обнаружены у нескольких видов, например у Trichosporon pullulans, однако активность этих ферментов низкая и о промышленном использовании таких дрожжей говорить пока не приходится. Дрожжи из рода Kluyveromyces хорошо растут на инулине — основном запасном веществе в клубнях топинамбура — важной кормовой культуры, которая также может быть использована для получения дрожжевого белка.

В последнее время в качестве продуцентов белка стали использовать бактерии, которые отличаются высокой скоростью роста и содержат в биомассе до 80% белка. Бактерии хорошо поддаются селекции, что позволяет получать высокопродуктивные штаммы. Их недостатками являются трудная осаждаемость, обусловленная малыми размерами клеток, значительная чувствительность к фаговым инфекциям и высокое содержание в биомассе нуклеиновых кислот. Последнее обстоятельство неблагоприятно только в том случае, если предусматривается пищевое использование продукта. Снижать содержание нуклеиновых кислот в биомассе, употребляемой на корм животным, нет необходимости, так как мочевая кислота и ее соли, образующиеся при разрушении азотистых оснований, превращаются в организме животных в алантоин, который легко выделяется с мочой. У человека избыток солей мочевой кислоты может способствовать развитию ряда заболеваний.

Следующую группу продуцентов белка составляют грибы. Они привлекают внимание исследователей благодаря способности утилизировать самое разнообразное по составу органическое сырье: мелассу, молочную сыворотку, сок растений и корнеплодов, лигнин- и целлюлозосодержащие твердые отходы пищевой, деревообрабатывающей, гидролизной промышленности. Грибной мицелий богат белковыми веществами, которые по содержанию незаменимых аминокислот ближе всего к белкам сои. Вместе с тем белок грибов богат лизином, основной аминокислотой, недостающей в белке зерновых культур. Это позволяет на основе зерна и грибной биомассы составлять сбалансированные пищевые и кормовые смеси. Грибные белки имеют достаточно высокую биологическую ценность и хорошо усваиваются организмом.

Положительным фактором является и волокнистое строение выращенной культуры. Это позволяет имитировать текстуру мяса, а с помощью различных добавок — его цвет и запах. Хранят грибной мицелий обычно в замороженном виде.

В качестве субстрата грибами используются глюкоза и другие питательные вещества, а общим источником азота служат аммиак и аммонийные соли. После завершения стадии ферментации культуру подвергают термообработке для уменьшения содержания рибонуклеиновой кислоты, а затем отделяют мицелий методом вакуумного фильтрования.

Источниками белковых веществ могут служить и водоросли. При фототрофном способе питания и образования биомассы они используют углекислый газ атмосферы. Выращивают водоросли, как правило, в поверхностном слое прудов, где с площади 0,1 га можно получить столько же белка, сколько с 14 га посевов фасоли. Белок водорослей пригоден не только для кормовых, но и пищевых целей.

Наконец, хорошими продуцентами белка являются рясковые, которые накапливают протеина до 45% от сухой массы, а также до 45% углеводов. Однако, несмотря на свои малые размеры, они не принадлежат к вышеперечисленным производителям белка (микроорганизмам), так как не только являются многоклеточными организмами, но и относятся к высшим растениям.

Читать также:  Как выращивать ремонтантную малину в краснодарском крае

Производство пищевого белка

биотехнологи.docx

1.4 Производство сыра

Молоко было, одним из первых продуктов, претерпевших микробиологическую переработку естественным образом. Это происходит за счет того, что в молоке легко размножаются бактерии и оно скисает. В этом процессе один из основных этапов — превращение молочного сахара — лактозы в молочную кислоту. На протяжении тысячелетий усовершенствовался процесс спонтанного скисания молока, результатом чего явилась разработка технологии получения сыра и других продуктов молочнокислого брожения.

Для производства сыра в молоко вносят культуру бактерий, род и вид которых зависит от типа производимого сыра.Размножение молочнокислых бактерий при скисании молока — это важный технологический процесс, так как они подавляют размножение других бактерий и тем самым обусловливают требуемые вкусовые качества и аромат сыра. Молочнокислые бактерии положительно влияют на желудочно-кишечную микрофлору. После внесения бактерий молоко инкубируют при определенной температуре и в результате оно скисает. Для углубления этого процесса — гидролиза белка, искусственно вносят протеолитический фермент, называемый сычужным ферментом или ренином. Ренин образуется в сычуге — в четвертом отделении желудка ягненка или теленка, вскормленных молоком. С возрастом организм животных вместо сычужного фермента вырабатывает другие протеолитические ферменты, с другой субстратной специфичностью, не вызывающие образования сыра.

Производство сычужного фермента в мировом масштабе составляет 25 млн. л. Несмотря на это, сычужный фермент является дефицитным и лимитирующим компонентом в технологии производства сыра. В результате многочисленных поисков получен протеолитический фермент микробного происхождения с аналогичной сычужному ферменту субстратной специфичностью. Этот фермент частично восполнил дефицит сычужного фермента. Другая значительная биотехнологическая новизна заключается в клонировании гена ренина в одну из культур мицелиальных грибов. Это позволило получить абсолютный аналог сычужного фермента. Для промышленных целей сычужный фермент получают из животных организмов (ягнят, телят, поросят) и из культур грибов.

По данным на 1998 г., аналог ренина, выделенный из грибов, удовлетворяет потребность в этом ферменте на одну треть. Микробный фермент широко используется в США и Франции — странах с большими традициями производства сыра.

Сразу же после внесения в молоко фермента, выделенного из животных или микроорганизмов, происходит ограниченный протеолиз казеина. Коагулированный казеин образует гелеподобную массу и соединяется с жиром, после чего сыворотку фильтруют, отжимают остаточную воду и высушивают завертыванием в ткань. Следующим этапом технологии является созревание сыра. Производство сыра из молока — дегидратационный процесс, при котором происходит концентрирование казеина и жира в 6-12 раз. В процессе созревания некоторых сыров практикуется искусственное размножение микроорганизмов (бактерии и грибы) для придания сыру специфического вкуса и аромата.

Приблизительно 100 лет тому назад производство сыра достигло такого уровня и коммерческих масштабов, что производители перестали доверять процессу спонтанного размножения молочнокислых бактерий и начали применять чистые бактериальные культуры. Многообразие бактерий вызвало значительное расширение ассортимента сыров.

Вкус, аромат и качество разных сортов сыра определяют следующие факторы: разновидность молока (козье, коровье, овечье), температура приготовления сыра, наличие вторичной микрофлоры.

Если первичная микрофлора — молочнокислые бактерии осуществляют формирование сыра как продукта, то вторичная микрофлора (бактерии, грибы) придают аромат и свойства, определяющие специфический вкус сыра.

Из молока можно получить и другие продукты брожения. Из них можно выделить кислые продукты: йогурт — аналог грузинского мацони. Традиционно йогурт получают ферментацией в молоке болгарской палочки и термофильного стрептокока.

Сметану, кумыс, кефир, видя (распространенный напиток в Финляндии) и другие продукты получают из пастеризованного молока, обработанного молочнокислыми бактериями.

2 Производство пищевого белка

Микроорганизмы начали использовать в производстве белковых продуктовза долго до возникновения микробиологии. Достаточно упомянуть все возможные разновидности сыра, а также продукты, получаемые путем ферментации соевыхбобов. И в первом, и во втором случае питательной основой является белок.

При выработке этих продуктов при участии микробов происходит глубокоеизменение свойств белоксодержащего сырья. В результате получают пищевыепродукты, которые можно дольше хранить (сыр) или удобнее потреблять (соевыйтворог). Микробы играют роль в производстве некоторых мясных продуктов,предназначенных для хранения. Так, при изготовлении некоторых сортовколбасы используется кислотное брожение, обычно при участии комплексамолочнокислых бактерий. Образовавшаяся кислота способствует сохранностипродукта и вносит вклад в формирование его особого вкуса.

Этим, пожалуй, и ограничивается использование микроорганизмов впереработке белков. Возможности современной биотехнологии в этих производствах невелики, за исключением сыроделия. Другое дело – выращиваниеи сбор микробной массы, перерабатываемой в пищевые продукты: здесь биотехнология может проявить себя во всей полноте.

2.1.Белок одноклеточных организмов

По многим важным показателям биомасса микроорганизмов может обладать весьма высокой питательной ценностью. В немалой степени эта ценность определяется белками: у большинства видов они составляют значительную долю сухой массы клеток. На протяжении десятилетий активно обсуждаются и исследуются перспективы увеличения доли белка микроорганизмов в общем балансе производимого во всем мире белка.

Производство такого белка связано с крупномасштабным выращиванием определенных микроорганизмов, которые собирают и перерабатывают в пищевые продукты. Чтобы осуществить возможно более полное превращение субстрата вбиомассу микробов, требуется многосторонний подход. Выращивание микробов впищевых целях представляет интерес по двум причинам. Во-первых, они растутгораздо быстрее, чем растения и животные: время удвоения их численности измеряется часами. Это сокращает сроки, нужные для производства определенного количества пищи. Во-вторых, в зависимости от выращиваемых микроорганизмов в качестве субстратов могут использоваться разнообразные виды сырья. Что касается субстратов, то здесь можно идти по двум главным

направлениям: перерабатывать низкокачественные бросовые продукты или ориентироваться на легкодоступные углеводы и получать за их счет микробную биомассу, содержащую высококачественный белок.

2.2. Получение белковых веществ на углеводном сырье

Исторически одним из первых субстратов, используемых для получения кормовой биомассы, были гидролизаты растительных отходов, предгидрализаты и сульфитный щелок – отходы целлюлозно-бумажной промышленности. Интерес к углеводному сырью как основному возобновляемому источнику углерода значительно возрос еще и с экологической точки зрения, так как оно может служить основой для создания безотходной технологии переработки растительных продуктов.

В связи с тем, что гидролизаты представляют собой сложный субстрат, состоящий из смеси гексоз и пентоз, среди промышленных штаммов- продуцентов получили распространение виды дрожжей C.utilis, C.scottii и C.tropicalis, способные наряду с гексозами усваивать пентозы, а также переносить наличие фурфурола в среде.

Читать также:  Как выращивать ремонтантную клубнику в квартире

Состав питательной среды в случае культивирования на углеводородном сырье значительно отличается от применяемого при выращивании микроорганизмов на углеводородном субстрате. В гидролизатах и сульфитных щелоках имеются в небольшом количестве практически все необходимые для роста дрожжей микроэлементы. Недостающие количества азота, фосфора и калия вводятся в виде общего раствора солей аммофоса, хлорида калия и сульфата аммония.

Ферментация осуществляется в эрлифтных аппаратах конструкции Лефрансуа-Марийе объемом 320 и 600 м3. Процесс культивирования дрожжей осуществляется в непрерывном режиме при рН 4,2-4,6. Оптимальная температура от 30 до 40(С.

Одним из перспективных субстратов в производстве кормовой биомассы являются гидролизаты торфа, имеющие в своем составе большое количество легкоусвояемых моносахаров и органических кислот. Дополнительно в состав питательной среды вводятся лишь небольшие количества суперфосфата и хлорида калия. Источником азота служит аммиачная вода. По качеству кормовая биомасса, полученная на гидролизатах торфа, превосходит дрожжи, выращенные на отходах растительного сырья.

2.3 Грибной белок (микопротеин)

Микопротеин – это пищевой продукт, состоящий в основном из мицелия гриба. При его производстве используется штамм Fusarium graminearum, выделенный из почвы. Микопротеин производят сегодня на опытной установке методом непрерывного выращивания. В качестве субстрата используется глюкоза и другие питательные вещества, а источниками азота служат аммиак и аммонийные соли. После завершения стадии ферментации культуру подвергают термообработке для уменьшения содержания рибонуклеиновой кислоты, а затем отделяют мицелий методом вакуумного фильтрования.

Если сопоставить производство микопротеина с процессом синтеза белков животных, то выявится ряд его преимуществ. Помимо того, что здесь выше скорость роста, превращение субстрата в белок происходит несравненно эффективнее, чем при усвоении пищи домашними животными

Нелишне напомнить, что корма для животных должны содержать некоторое количество белка, до 15-20% в зависимости от вида животных и способа их содержания. Положительным фактором является и волокнистое строение выращенной культуры; текстура массы мицелия близка к таковой у естественных продуктов, поэтому у продукта может быть имитирована текстура мяса, а за счет добавок – его вкус и цвет. Плотность продукта зависит от длины гиф выращенного гриба, которая определяется скоростью роста.

Перспективы и экономическая целесообразность употребления микроорганизмов в технологии производства пищевого и кормового белка.

Бесконечно многообразный мир микробов открыл пока лишь ничтожную часть своих неисчерпаемых богатств. Микробиологи утверждают, что невидимые существа могут вырабатывать любые известные вещества и им не нужны при этом, как на современных предприятиях, огромные давления и температуры, особо чистые или вредные вещества. Живая клетка, по словам академика Н. Н. Семенова, безмерно превосходит любой завод необыкновенной слаженностью процессов, ювелирной точностью результатов, экономичностью и рациональностью.

Микробная клетка способна за сутки переработать огромную массу питательных веществ, в 40 раз превышающую ее собственную. Необычайная скорость размножения, возможность синтезировать в больших количествах самые разнообразные вещества и вызывать биохимические процессы, которые не могут осуществлять клетки животных и высших растений, — все эти свойства микробов превращают их в непревзойденных производителей многих ценных продуктов. И прежде всего белка. В настоящее время, как уже отмечено, население Земли получает мало животного белка — лишь 40 % от научно обоснованной нормы. В дальнейшем в связи с быстрым ростом населения белка потребуется много больше (65 . 70 млн т ежегодно). Тогда традиционных методов получения белка станет явно недостаточно даже при условии быстрого освоения непродуктивных земель, выведения высокоурожайных сортов растений и высокопродуктивных пород животных.

Идея получить микробный белок, который по своему аминокислотному составу, пищевым качествам приближался бы к естественному продукту, а то и превосходил его, родилась около 30 лет назад. Представлялись два направления получения белка: для пищи человека и для кормления животных. Второе направление уже полностью освоено. На специальных предприятиях с помощью микроорганизмов получают кормовой белок и другие продукты с целью ликвидации острого белкового дефицита в кормах сельскохозяйственных животных. Оказалось, что микробный белок богат незаменимыми аминокислотами (лизин, треонин, триптофан, метионин, изолейцин, фенилаланин, тирозин). Небольшая добавка его резко улучшает корм.

Способ получения микробного белка — индустриальный, не зависит ни от климата, ни от сезона. Его можно использовать и на Крайнем Севере, и в экваториальных странах. Важно и то, что бактерии, дрожжи, применяемые в биотехнологии, отличаются очень высокой продуктивностью.

Так, нынешние ферментеры, установленные на заводах, за сутки обеспечивают выращивание 28 . 30 т дрожжевой биомассы, содержащей 11 . 13 тыс. кг переваримого белка каждый. Значит, дрожжи в таком ферментере образуют белка не меньше, чем 100 тыс. быков. Если бы, например, годовалый теленок мог накапливать биомассу так же быстро, как микроорганизмы, то за сутки он вырос бы настолько, что не уместился бы в помещении площадью 20 м 2 .

Дата добавления: 2018-01-13 ; просмотров: 138 ;

Производство микробиологического кормового и пищевого белка

Дефицит кормового белка сдерживает развитие животноводства. Биологическая ценность белка определяется содержанием в нем незаменимых аминокислот, не синтезируемых в организме животного (валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан, фенилаланин). Недостаток какой — либо из аминокислот в кормах лимитирует усвояемость остальных, приводит к перерасходу кормов и должен компенсироваться концентрированными кормами. Среди зерновых и зернобобовых культур наиболее сбалансирован по содержанию незаменимых аминокислот белок зерна сои, риса и гороха. В белках зерна пшеницы и ячменя содержится мало лизина, метионина и изолейцина, а в белках зерна кукурузы — триптофана. (табл.1)

Одним из путей решения проблемы кормового белка является получение его микробиологическим путем. При этом продуцентами белка служат дрожжи, бактерии, низкие и высшие грибы и одноклеточные водоросли. Микроорганизмы отличаются высоким (до 60% сухой массы) содержанием белка, сбалансированного по аминокислотному составу.

Таблица 1 Содержание незаменимых аминокислот в белках некоторых микроорганизмов в г на 100 г белка (В.С.Шевелуха и др., 2003).

Кроме того, микроорганизмы содержат углеводы, липиды, витамины, макро- и микроэлементы. Важным достоинством производства кормового белка на основе микроорганизмов является использование сельскохозяйственных отходов, возможность организации промышленного производства, отсутствие сезонности и зависимости от погодно-климатических условий.

Читать также:  Как выращивать огурцы в парнике из укрывного материала

Кормовые дрожжи получают на отходах деревообрабатывающей, кондитерской, молочной промышленности, сельского хозяйства, парафинов нефти.

Для получения кормовых дрожжей на растительном субстрате (отходы древесины, солома, льняная костра, картофельная мезга, свекловичный жом и др.). наиболее эффективны дрожжи родов (Candida, Torulopsis, Saccharomyces). Растительное сырье, содержащее целлюлозу и гемицеллюлозу, подвергается кислотному гидролизу, в результате чего более половины полисахаридов гидролизуется до моносахаридов. На гидролизатах растительного сырья или на барде, получаемой после сбраживания гидролизатов и отгонки спирта, получают кормовые дрожжи.

Кормовые дрожжи выращивают в специальных ферментерах, где обеспечивается перемешивание суспензии микробных клеток в жидкой питательной среде и аэрация. После окончания рабочего цикла (20 часов) культуральная жидкость вместе с клетками дрожжей выводится из ферментера, после чего дрожжи отделяются от жидкости, подвергаются специальной обработке для разрушения клеточных оболочек, упариваются и высушиваются.

Субстратом для получения кормовых дрожжей могут служить парафины нефти в сочетании с макро- и микроэлементами, витаминами и аминокислотами. Этот процесс впервые был освоен в СССР, а годовой объем белково-витаминных концентратов (БВК) полученных из парафинов нефти, достигал 1 млн.т. В Западной Европе парафины нефти для этих целей не применяются в связи с дороговизной сырья. Кроме того, кормовые дрожжи, полученные на основе парафинов нефти, могут содержать вредные примеси, а отходы производства экологически небезопасны.

В качестве субстратов для получения кормовых дрожжей могут служить также спирты этанол и метанол, полученные из растительных отходов или природного газа.

При переработке молока образуется молочная сыворотка, каждая тонна которой содержит 50 кг молочного сахара, до 10 кг белка; 1.5 кг жира, витамины, микроэлементы и др .(А.Г. Лобанок и др.1988). Прямое применение сыворотки для скармливания животным осложнено транспортировкой, хранением, низкой стоимостью, низкой степенью конверсии белка сыворотки в белок тела животных. Весьма перспективно производство белково-витаминных продуктов при использовании технологических процессов на основе дрожжей, способных к росту на молочной сыворотке. Такой штамм дрожжей Torulopsis candida был выделен из французского сыра камамбер в Институте микробиологии НАН Беларуси. Институтом совместно с Белорусским филиалом ВНИИ молочной промышленности и Белорусским НИИ животноводства созданы технологии получения ряда кормовых препаратов на основе микробной переработки молочной сывортоки (Био-Зум, Промикс, Провилакт, Провибел и др.).Препараты ЗЦМ (заменители цельного молока) превосходят сыворотку по содержанию и качеству белка, а также витаминов. Каждая тонна использованного в животноводстве БИО-ЗЦМ высвобождает для пищевых целей 8 т цельного молока.

Сухой обогащенный белками кормовой продукт «Провилакт » применяется как заменитель сухого обезжиренного молока.

Жидкий белковый продукт «Промикс» с содержанием белка в 2.5-3 раза выше, чем в исходной молочной сыворотке, предназначен для откорма свиней.

Белковые концентраты из бактерий. Бактерии в качестве продуцентов белка отличаются высокой скоростью роста, содержат в биомассе до 70-80 % белка с высокой концентрацией метионинa. Субстратом для получения белка могут быть в этом случае природный газ, метанол, этанол, водород. Продуцентами белка из метанола являются бактерии рода Methylomonas, Pseudomonas, Methylophillus; из этанола — Аcinetobacter. Для производства белка используют ферментеры. Производство белка из метанола налажено в Великобритании, Швеции,ФРГ,США, Италии, России; из этанола — в США, Японии, ФРГ, Испании, России.

Продуцентами белка из водорода являются бактерии из рода Hydrogenomonas. Они содержат в биомассе до 80% белка с 35-40% незаменимых аминокислот. В перспективе этот процесс может быть использован для получения пищевых микробных белков.

Кормовые белки из водорослей

В ряде стран для получения кормового белка применяют одноклеточные водоросли Chlorella и Scenedesmus, а также сине-зеленые водоросли Spirulina, которые используют в качестве источника энергии солнечный свет.

Возможно выращивание водорослей в открытых водоемах , а также в закрытых системах. С 1 га в одной поверхности открытого типа получают до 70 т сухой биомассы в год, причем содержание белков в клетках хлореллы и сценедесмус составляет 45-50% на сухую массу, а в клетках спирулины — 60-65%. Возможно выращивание водорослей на промышленных и сельскохозяйственных стоках, что позволяет не только получить ценный корм, но и обеззараживать стоки (В.С.Шевелуха и др., 2003).

Кормовые белки из грибов.

Грибы (высшие и низшие) являются ценными продуцентами белков, способными использовать в качестве субстрата мелассу, молочную сыворотку, сок растений, лигнин — и целлюлозосодержащие отходы пищевой и деревообрабатывающей промышленности (А.Г.Лобанок и др.,1988).Белки грибного мицелия по содержанию незаменимых аминокислот близки к белкам сои. Они богаты лизином, имеют высокую биологическую ценность и усвояемость. Для промышленного культивирования подобраны быстрорастущие штаммы грибов из родов Penicillium, Aspergillus,Fusarium, Trichoderma. В биомассе грибов синтезируется 20-60% белков от сухой массы.

Достигнув 21-го века, человечество не решило главной проблемы — проблемы голода. Рост народонаселения на планете, сокращение площади питания на одного жителя планеты в результате эрозии и отвода земель на несельскохозяйственные нужды требует поиска новых решений для обеспечения населения продовольствием. Человек должен потреблять ежедневно 60-100 г белка. Повышение производительности в растениеводстве и животноводстве требует увеличения энергетических расходов на единицу продукции и усиливает антропогенное давление на окружающую среду. Альтернативой такого подхода может быть производство пищевого белка биотехнологическим путем на основе переработки субстрата микроорганизмами. В качестве субстрата могут использоваться метиловый и этиловый спирты, природный газ, соединения неорганической природы, древесина. Продуцентами пищевого белка могут быть дрожжи, бактерии, грибы, микроскопические водоросли.

Такие подходы к производству пищевого белка уже испытаны в ряде стран. Добавкой к пище могут служить дрожжи рода Candida, выращенные на мелассе. В Японии производят пищевые продукты на основе водорослей хлореллы и спирулины. В Великобритании используют для получения пищевого белка нетоксичные штаммы грибов рода Fusarium. В Германии выпускается в качестве белкового пищевого продукта облагороженная бактериальная биомасса, выращенная на метаноле. В Новой Зеландии совместно с Великобританией разработан способ получения пищевого продукта из грибов рода Penicillium, в Австрии — из дрожжей-сахаромицетов, во Франции — из дрожжеванной молочной сыворотки (А.Г.Лобанок и др.,1988). Таким образом, получение пищевого белка весьма перспективно как путь решения продовольственной проблемы, утилизации отходов сельского хозяйства, сбережения ресурсов и охраны окружающей среды.

Источники:

http://www.biotechnolog.ru/prombt/prombt6_1.htm

http://myunivercity.ru/%D0%91%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F/%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE_%D0%BF%D0%B8%D1%89%D0%B5%D0%B2%D0%BE%D0%B3%D0%BE_%D0%B1%D0%B5%D0%BB%D0%BA%D0%B0/458475_3356806_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B02.html

http://znatock.org/s3522t1.html

http://studwood.ru/2526784/meditsina/proizvodstvo_mikrobiologicheskogo_kormovogo_pischevogo_belka

Ссылка на основную публикацию
Adblock detector